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ABSTRACT

This is the second part of a series on benchmarking raw 1-h high-resolution numerical weather prediction

surface-temperature forecasts from NOAA’s High-Resolution Rapid Refresh (HRRR) system. Such 1-h

forecasts are commonly used to underpin the background for an hourly updated surface temperature analysis.

The benchmark in this article was produced through a gridded statistical interpolation procedure using

only surface observations and a diurnally, seasonally dependent gridded surface temperature climatology.

The temporally varying climatologies were produced by synthesizing high-resolution monthly gridded cli-

matologies of daily maximum and minimum temperatures over the contiguous United States with yearly and

diurnally dependent estimates of the station-based climatologies of surface temperature. To produce a 1-h

benchmark forecast, for a given hour of the day, say 0000 UTC, the gridded climatology was interpolated to

station locations and then subtracted from the observations. These station anomalies were statistically in-

terpolated to produce the 0000 UTC gridded anomaly. This anomaly pattern was continued for 1 h and added

to the 0100UTC gridded climatology to generate the 0100UTC gridded benchmark forecast. The benchmark

is thus a simple 1-h persistence of the analyzed deviations from the diurnally dependent climatology. Using a

cross-validation procedure with July 2015 and August 2018 data, the gridded benchmark provided compet-

itive, relatively unbiased 1-h surface temperature forecasts relative to the HRRR. Benchmark forecasts were

lower in error and bias in 2015, but the HRRR system was highly competitive or better than the gridded

benchmark in 2018. Implications of the benchmarking results are discussed, as well as potential applications

of the simple benchmarking procedure to data assimilation.

1. Introduction

Very short-term numerical weather predictions (NWP)

of surface (2m) temperature may exhibit systematic

biases and increased errors due to the very substantial

challenges of modeling the state of the land surface and

its interactions with the atmosphere. These deficiencies

have several potential causes, including land surface

temperature and soil moisture initial state error and bias

(Holmes et al. 2012; de Rosnay et al. 2014), misestimated

predictions of the downward solar radiation reaching the

surface (Yang et al. 2006; Paquin-Ricard et al. 2010;

Räisänen and Järvinen 2010; Thelen and Edwards 2013;

Van Weverberg et al. 2015; Ruiz-Arias et al. 2016),

misestimated predictions of mechanical mixing of sur-

face air with air further aloft (Sandu et al. 2013),

and mismodeling of the land–atmosphere feedbacks

(Dirmeyer et al. 2018). Some of the bias in the vali-

dation against observations, however, may be due to

the comparison of model-forecast data intended to

represent box averages against observations with

characteristics unique to each particular site (i.e.,

representativeness error).

High-resolution, hourly surface temperature analyses

are used for many critical purposes, including for sta-

tistical postprocessing and situational awareness (i.e.,

monitoring of current conditions). Such analyses com-

monly leverage a short-term numerical prediction to

provide a background (first guess) forecast. In situations

with a paucity of surface observations, the hourly sur-

face temperature analysis may strongly reflect bias and
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error character of the background forecast. Hence,

quantifying and benchmarking the errors in short-range

surface temperature background forecasts used in rap-

idly updating data assimilation procedures is a useful

first step in evaluating options for how to make progress

in improving hourly surface-temperature analyses.

Following the benchmarking work of others, notably

Best et al.’s (2015) benchmarking of surface latent and

sensible heat flux, we have developed a benchmark

for 1-hourly surface-temperature forecasts. In Hamill

2020, hereafter Part I), the reference benchmark was a

station-based model of 1-h surface temperature fore-

casts. For surface weather stations in the contiguous

United States (CONUS) with relatively long and com-

plete records, an hourly and seasonally dependent cli-

matology of surface temperature was developed for

each station. The current hour’s deviation from that

climatology was persisted for 1 h and added to the cli-

matology for the next hour to generate the synthetic 1-h

benchmark forecast. Part I showed that this station

benchmark had substantially reduced errors and bias

when compared with raw HRRR forecasts. July 2015

root-mean-square errors (RMSEs) were approximately

half in the station benchmark relative to 1-h forecasts

of surface temperature from the raw High-Resolution

Rapid Refresh System (HRRR; Benjamin et al. 2016).

The August 2018 raw HRRR RMSEs and biases were

substantially improved relative to the station bench-

mark but were still larger.

Surface temperatures are extremely spatially hetero-

geneous. Due to subgrid-scale differences in elevation,

terrain type, shading, precipitation, soil and vegetation

type, snow cover, and more, surface temperatures can

vary substantially even on scales of hundreds of meters.

Hence, a legitimate critique of Part I is that the low error

of its benchmark may be due to its ability to represent

persistent subgrid variability in the verification data that

numerical model guidance cannot represent without

much finer horizontal resolution.

This second part in the series describes and applies an

alternative benchmark, one based on a gridded statisti-

cal interpolation of the observations’ deviation from a

seasonally and diurnally dependent climatology. This

procedure will be called the ‘‘gridded benchmark’’

hereafter. To make sure that the potential advantage

the station benchmark had in representing site-specific

variability is avoided, a cross-validation procedure is

used. When producing the gridded benchmark forecasts

at a particular station, that station’s data are excluded;

the cross-validation procedure is explained more in

section 2d. The operating hypothesis of this article is

that even this more rigorous benchmark will still pro-

vide competitive errors relative to numerical weather

predictions in regions with moderate to dense station

observations. That is, the advantages from leveraging

the current analyzed deviation from climatology are

hypothesized to equal or outweigh the benefits of being

able to predict dynamical changes due to meso and

synoptic-scale weather variations with a NWP system,

which may have short-term systematic error tendencies

larger than the weather-induced tendencies.

The procedure for generating the gridded benchmark

forecast is relatively simple and is illustrated in Fig. 1.

The procedure requires surface-temperature climatol-

ogy grids that are seasonally and hourly dependent. It

also requires a procedure for statistically interpolating

the current hour’s surface-temperature observations to

create a gridded estimate of the anomalies from clima-

tology. The benchmark is generated by statistically

interpolating the current hour’s stations’ anomalies

from climatology to create a gridded field of anomalies.

This anomaly field is persisted for 1 h (i.e., a 1-h fore-

cast is generated by adding the persisted anomaly to the

next hour’s climatology appropriate to that day of

the year).

The gridded seasonally and hourly varying climatol-

ogies are based upon high-resolution climatologies of

daily maximum and minimum surface temperature

over the CONUS produced by the Parameter-elevation

Relationships on Independent Slopes Model (PRISM)

group at Oregon State University (Daly et al. 2008 and

references therein). PRISM monthly daily maximum

and minimum climatologies are synthesized with the

seasonally and diurnally dependent station climatol-

ogies (Part I) to generate the high-resolution, gridded,

seasonally and diurnally dependent climatologies.

The statistical interpolation of anomalies from the

climatology are produced via optimal (statistical) in-

terpolation (Gandin 1965 and Daley 1991, chapter 4).

While there are several other methods in the literature

for creating observation-based surface temperature an-

alyses such as Uboldi et al. (2008), Haylock et al. (2008),

and Lussana et al. (2018), the procedure used here is

simple and easy to apply.

Section 2 below will describe the datasets and the

methods that will be used in evaluating the numeri-

cal guidance with respect to the gridded benchmark.

Section 3 will describe: 1) the numerical procedures used

for generating the gridded benchmark, including the

procedure for developing a gridded climatology unique

to each hour of the day and Julian day of the year; 2)

the optimal interpolation procedure for producing the

gridded analysis of the deviations from climatology, and 3)

their combination to generate the statistical 1-h back-

ground forecast. Section 4will discuss the results. Section 5

provides a discussion on the broader applicability of the
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methodologies developed here. Section 6 provides

conclusions.

2. Data and evaluation methods

The gridded benchmarking procedure will generate

statistical 1-h forecasts over the CONUS based on two

data sources, high-resolution monthly gridded surface-

temperature climatologies and time series of CONUS

station observations. Their synthesis will provide the

gridded benchmark for dynamical 1-h forecasts from the

rawHRRR system in July 2015 andAugust 2018, absent

the elevation corrections for analysis grid differences.

These data are now described along with forecast eval-

uation methods.

a. PRISM surface temperature climate data

Recognizing great user demand for high-resolution

gridded climatologies of key variables such as surface

temperature, humidity, and precipitation, the PRISM

group at Oregon State University developed high-

resolution gridded climatologies for domains such as

the CONUS (Daly et al. 2008). (They provide se-

lected datasets to the community free of charge,

available for download through their web portal, http://

prism.oregonstate.edu/normals/.) We downloaded high-

resolution (0.046678) gridded climatologies of maximum

and minimum surface temperatures for each month of

the year over the CONUS. A cubic-spline temporal fit-

ting was applied to each grid point to develop gridded

daily maximum and minimum climatologies from the

monthly climatologies; this procedure will be described

in section 3.

b. Surface-temperature observations

As in Part I, the observation dataset used in this ex-

periment for developing the benchmark and validating

the forecasts was the National Center for Atmospheric

Research (NCAR) dataset 472.0, an archive of quality-

controlled hourly surface observations over NorthAmerica

(Meteorological Development Laboratory/Office of

Science and Technology/National Weather Service/

NOAA/U.S. Department of Commerce 1987). Surface

temperatures over the CONUSwere used for the period

0000 UTC 1 January 2004–2300 UTC 28 January 2019.

We chose to further limit use of surface temperatures

in this dataset to only those with observation sites

where data were available at 97% or more of the

hours, days, and years in the analysis period. This

observation availability cutoff was made based on the

importance of an accurate estimation of the clima-

tology to this procedure. 1118 stations were available

in the CONUS.

c. Experimental HRRR 1-h forecasts

To compare the gridded benchmark against numerical

forecasts, 1-h forecasts of raw background surface tem-

peratures were extracted from the HRRR limited-area

prediction system of Benjamin et al. (2016), again absent

the elevation adjustment for RTMA grid differences.

For comparison with station data, the HRRR forecast

value at the nearest grid point was used. HRRR version

1 forecast data were used in July 2015 and HRRR ver-

sion 3 data were used in August 2018. The HRRR sys-

tem generated hourly analyses and numerical forecast

guidance to 115h lead time. HRRR data are used for

many applications in the NWS, including severe weather

prediction, short-term precipitation prediction, aviation

applications, and for providing background fields in

the generation of an ‘‘analysis of record’’ (De Pondeca

et al. 2011). The underlying prediction system was the

Advanced Research version of the Weather Research

and Forecasting (WRF) Model (WRF-ARW), with a

3D ensemble–variational data assimilation system.

See Benjamin et al. (2016) for more details.

HRRR forecasts in July 2015 were sometimes un-

available; in particular, 1-h forecasts initialized for the

following dates: 1500 UTC 1 July 2015, 1000 UTC 2 July

2015, 0500 UTC 3 July 2015, 1400 UTC 3 July 2015,

1400 UTC 5 July 2015, 1200 UTC 6 July 2015, 2100 UTC

FIG. 1. Illustration of the procedure for generating 1-h benchmark gridded forecasts of surface temperature. Blue

boxes are datasets. Green boxes are algorithmic procedures.
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6 July 2015, 0800 8 July 2015, 0300 UTC 10 July 2015,

0800UTC 11 July 2015, 1600UTC11 July 2015, 1400UTC

18 July 2015, 2100 UTC 18 July 2015, 1300 UTC 22 July

2015, 1100 UTC 23 July 2015, 1300 UTC 26 July 2015,

and 2100 UTC 28 July 2015. The validation of both the

HRRR and the gridded benchmark will not include

data at these times.

d. Evaluation methods

Standard methods of evaluation of deterministic

forecasts were used, including root-mean-square error

(RMSE), mean absolute error (MAE), and bias, all

following standard definitions in Wilks (2011). All grid

points with observations within the CONUS mask were

used in the evaluation. The 5th and 95th percentile

confidence intervals of a distribution consistent with

the null hypothesis of no differences are provided on the

comparative plot of errors from the two systems. The

confidence intervals were determined through a paired

block bootstrap algorithm following Hamill (1999).

Statistics were calculated separately for each day, and

statistics from one day to the next were assumed to be

independent (ibid).

The gridded benchmark 1-h forecasts were cross val-

idated; HRRR data were not. Specifically, 10 replica-

tions were produced. In each replication 90% of the

observations were used to generate the gridded bench-

mark, and for the remaining 10% of the sites the ob-

servations 1 h later were used for validation. Over the 10

replications, verification against the full set of quality

controlled CONUS observations were thus performed.

The cross-validated results should provide a realistic

benchmark for the HRRR forecasts; both suffer the

same issues of not representing the site-specific vari-

ability of the verifying observations. Since the observa-

tion network was aggressively thinned in this study to

include only those sites with nearly complete time series,

we anticipate that many more observations would be

available to the gridded benchmark in an operational

environment, improving its quality. The number of

observations used in producing the PRISM climatol-

ogy, for instance, is roughly an order of magnitude larger.

3. Numerical methods used to create the gridded
benchmark

The 1-h forecast gridded benchmarks were created by

generating a gridded statistical interpolation of the

current hour’s observed anomalies from the climatology

for that hour and that Julian day. These deviations were

persisted for 1 h and added to the next hour’s climatol-

ogy to generate the benchmark forecasts. The overall

procedure is illustrated in Fig. 1.

To produce the benchmark forecast, we require sea-

sonally and hourly dependent, high-resolution gridded

climatologies and a procedure for generating a statistical

interpolation of the current hour’s deviations from that

climatology. These are now described.

a. Development of hourly gridded CONUS surface
temperature climatologies

The first step in creating the hourly and seasonally

dependent surface-temperature climatology was to es-

timate gridded maximum and minimum temperature

climatologies unique to each Julian day. This was

achieved by cubic spline-fitting the gridded PRISM cli-

matologies of monthly estimated of the daily maximum

and minimum temperature to each Julian day of the

year.Monthly PRISM values were assigned to the Julian

day associated with the middle Julian day in each cal-

endar month. These monthly values were also wrapped,

repeating October–November–December data at the

beginning of the time series and January–February–

March data at the end of the time series. A cubic-spline

function fitting (Press et al. 1992, their section 3.3) with

8 knots spaced throughout the calendar year was then

used to estimate the maximum and minimum tempera-

tures for each Julian day. This spline-fitting procedure

was applied independently for each grid point in the

CONUS. For each Julian day d, gridded arrays of

PRISM-based maximum temperature TP
max(d) and mini-

mum temperature TP
min(d) were thus created.

For the gridded benchmarking procedure, we re-

quired the gridded climatology at each hour of each

Julian day, not only estimates of the daily maximum and

minimum temperature climatology. The hourly station

climatologies developed and discussed in Part I utilized

were next utilized to estimate this. For each surface

station s and for each hour h of day d, the hourly and

seasonally dependent climatology Tclim(s, d, h) were

then used to estimate that day’s and hour’s fractional

value F(s, d, h) between the daily minimum and daily

maximum for each UTC hour h 2 [0, 23]. For a chosen s

and d, let Tmin(s, d) represent the station’s minimum

climatological temperature over the full 24 h. LetTmax(s,

d) be the station’s maximum climatological temperature

for that Julian day, and let Tclim(s, d, h) represent the

climatological temperature at hour h, calculated in Part

I. F(s, d, h) was then defined as

F(s,d,h)5
T(s,d, h)2T

min
(s, d)

T
max

(s, d)2T
min

(s, d)
. (1)

The station fractional values F(s, d, h) were objec-

tively analyzed with a simple procedure (Cressman

1959) to create a gridded array estimate F(d, h) on the
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0.046678 PRISM grid using a successive-corrections pro-

cedure with three passes and influence radii of 70, 50, and

30 grid points. For each Julian day and hour, the PRISM-

based gridded climatology TP(d, h) was then created as

follows:

TP(d,h)5TP
min(d)1F(d,h)3 [TP

max(d)2TP
min(d)] . (2)

b. Generation of gridded analyses of the deviations
from the climatology

The next step was to apply a data-assimilation (sta-

tistical interpolation) procedure to create a gridded

analysis of the deviations from climatology T0
a(d, h)

from differences between the observed surface

temperatures and the climatology TP(d, h). For this,

optimal interpolation (Gandin 1965; Daley 1991,

chapter 4) was used. The equation that was used to

produce the analysis of the deviations from clima-

tology was

T0
a(d,h)5T0

b(d,h)1BHT(HBHT 1R)
21ft

stn
(d, h)

2H[TP(d, h)]g, (3)

whereT0
b(d, h) was the deviation frombackground state,

here an array of zeros (i.e., the background state was

implicitly the seasonally, diurnally dependent PRISM-

based climatology); B was the background error co-

variance matrix, describing the statistical relationships

between deviations of the station observations from

background climatology as a function of horizontal

distance, vertical distance, and a coastal proximity index

difference, described later; H was the forward operator,

which for this high-resolution grid consisted of extract-

ing themodel forecast at the PRISM grid point closest to

each observation; and tstn(d, h) was the observation

column vector of station surface-temperature observa-

tions. The H[T(d, h)] operator thus created a column

vector of extracted climatological values of the same

dimension as the observation vector at the station lo-

cations; R was the observation- and representativeness-

error covariance matrix, with assumed error variance

of 1C2, the same value used in hourly data assimilation

procedure described in De Pondeca et al. (2011). Off-

diagonal elements in R were zero, consistent with the

assumption that observation errors at different stations

are independent.

Analyzed deviations were then persisted for 1 h to

create the forecast deviations. LetP(�)5 the persistence

of the forecast anomaly model operator (i.e., an identity

matrix). That is,

T0
a(d,h1 1)5P[T0

a(d,h)]5T0
a(d,h). (4)

The final, full-field forecast is the PRISM climatology 1 h

later added to the persisted anomaly to create the 1-h

gridded benchmark forecast:

T
a
(d,h1 1)5P[T0

a(d, h)]1TP(d,h1 1). (5)

Let us return to the details of the optimal interpo-

lation procedure. Spatial horizontal error-covariance

models for upper-air data have often assumed that

errors are horizontally homogeneous, isotropic, and

Gaussian distributed with an estimated correlation

length scale (e.g., Daley 1991, section 4.3). For surface

data, after examining several alternatives, we decided to

use an exponentially distributed spatial error correlation

model (Rasmussen and Williams 2006) within B, which

better fit the summertime spatial relationships in the

surface data, with its greater small-scale variability due

to smaller-scale variations in land surface characteris-

tics. During other seasons, the gamma-exponential co-

variance model often provided better fits (not shown).

For two locations z1 and z2 with a horizontal great-circle

distance dh between them and with background-error

variancess2
z1
ands2

z2
at the two locations, the exponential

horizontal exponential covariance model is the product

of the background error standard deviations at the two

locations with the exponential correlation function:

Cov(z
1
, z

2
) 5s

z1
s
z2
exp

�
2

d
h

r
h

�
. (6)

Here sz1 and sz2 denote the gridded estimates of

background error spread (standard deviation), derived

from an analysis of observation deviations from the

hourly climatology, estimated from all stations in the

CONUS domain for a given month. rh is the objectively

fitted horizontal length scale. Figure 2 provides a scat-

terplot of the horizontal error correlations between

station pairs and the fitted correlation model for

0000 UTC. The observed Pearson correlations (dots)

were computed from time series of vector pairs of

the deviations of 0000 UTC observations from the

0000 UTC climatology. July and August data from 2004

to 2018 were used to generate this plot, and data were

limited to location pairs east of 1058W longitude (i.e.,

east of the Rocky Mountains). Also, correlations were

only computed if station elevation differences were

less than 100m. In this way, possible effects of terrain

elevation and coastal proximity differences between

station locations were more muted; incorporated of

these effects will be discussed later. The correlation

length scales were computed with the python software

library function ‘‘scipy.optimize.curve_fit’’ and using the

‘‘Trust Region Reflective’’ minimization algorithm. As
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Fig. 2 shows, the exponential model provided a reason-

able fit to station-to-station correlations. Though not

shown here, station pairs with correlations less than the

fitted line in Fig. 2 were more commonly found along the

U.S. Gulf Coast and in the southeastern United States,

where climatological background-error variances were

also lower. Also not shown, we developed and tested a

more complicated error covariance model that permit-

ted the geographically varying horizontal length

scales, leveraging these spatial variations in back-

ground error spreads as a predictor of the length

scale. However, since the use of the resulting more

complicated model did not reduce the analysis errors

appreciably, this spatially varying horizontal length

scale was omitted in the final algorithm for simplic-

ity, and details are not described here.

Incorporation of two other factors into the spatial

error covariance model slightly improved the estimation

of covariances across the CONUS and the subsequent

1-h forecast error. First, as the algorithm must perform

acceptably in mountainous regions as well as flatter re-

gions, the distance norm in the error covariance model

incorporated absolute differences in elevation. In this

way, observations near mountain peaks had a greater

impact on the effects of temperature analyses at other

high elevations than observations in mountain valleys

at a similar horizontal distance. The second factor we

chose to incorporate was an index of the difference in

‘‘coastal proximity’’ between two locations. This was

inspired by the use of a coastal proximity index pro-

duced in the PRISM project, whose use is explained in

Daly et al. (2008). A map of the coastal proximity index

used in this manuscript is shown in Fig. 3. Only values at

grid points in the CONUS were used. Along the U.S.

West Coast, temperature covariability is commonly re-

lated to differences in coastal proximity. Consider three

observation sites, two along the coast and another inland,

all equidistant. Covariances between the two coastal sites

are commonly larger than covariances between either

coastal site or the inland site. This is related to the lim-

ited inland penetration of marine air.

The three effects, horizontal distance, vertical dis-

tance, and differences in coastal proximity, were syn-

thesized into a single distance norm. Let dh represent

the horizontal great-circle distance between the grid

points in kilometers, normalized by its objectively fitted

FIG. 3. Map of the coastal proximity index around the CONUS. Data courtesy of the PRISM

group, Oregon State University. The index is used only at grid points within the CONUS.

FIG. 2. Illustration of fitted exponential horizontal correlation

function and a scatterplot of the correlation of pairs of vectors

comprised of time series of the station observations’ deviation from

climatology. 0000 UTC July 2004–18 data were used to determine

correlations between station pairs.
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horizontal length scale. Let dy represent the vertical

between the grid points in meters. This distance was

normalized by an objectively fitted vertical correlation

length scale ry. The coastal proximity difference be-

tween two locations, dcp, was similarly normalized by an

objectively fitted coastal-proximity index scale rcp. The

distance norm between two locations was thus defined as

kz
1
2 z

2
k5

2
4�dh

r
h

�2

1

�
d
y

r
y

�2

1

 
d
cp

r
cp

!2
3
5
1/2

. (7)

The final background error covariance model be-

tween two locations was thus

Cov(z
1
, z

2
) 5s

z1
s
z2
exp(2kz

1
2 z

2
k) . (8)

The diurnal variations of the July fitted rh, ry, and rcp
length scales are shown in Fig. 4 using data from across

the CONUS; only station pairs less than 2000km distant

from each other were used in the calculation. Vertical

length scales were estimated to be shorter overnight,

indicating a given vertical elevation difference between

two locations will result in higher correlation by day and

lower correlation by night. Perhaps this was related to

the common pooling of cool air in mountain valleys

overnight with concomitant decorrelation of valley

temperatures with temperatures near adjacent moun-

tain tops. Coastal proximity length scales peaked in the

early morning hours for locations of relevance along

the U.S. West Coast. Perhaps with overnight cooling,

summertime U.S. West Coast land–sea temperature

contrasts were at a minimum in the late-night hours,

leading to the decreased influence of coastal proximity

differences.

A gridded estimate of the standard deviations (spread)

of observations with respect to the climatology are

presented in for 0000 and 1200 UTC July 2015 and

August 2018 data in Fig. 5. Such fields define the values

of sz1 and sz2 in Eq. (8). To generate these gridded es-

timates, at each station and for each hour of the day,

the standard deviations of the observations with respect

to the observation climatology was determined using

all July and August data. These station-based stan-

dard deviations were then objectively analyzed using

a Cressman (1959) successive-corrections procedure

with three passes and influence radii of 700, 400, and

250km. The background for the first pass was a con-

stant field reflecting the mean of all the calculated

standard deviations at observation sites. The use of the

successive-corrections procedure was arbitrary and

chosen for its simplicity, but the accuracy of the subse-

quent analysis depends only slightly on the accuracy of

these gridded estimates. The east–west spread differ-

ences in Fig. 5 at 0000 UTC may partly reflect the dif-

fering sun elevation angles; it was still late afternoon in

the western United States but early evening in the

eastern United States. Generally, daytime spreads were

larger than overnight spreads as a consequence of day-

to-day variability in solar-radiation reaching the sur-

face, and concomitant variations day-to-day variability

of surface heating. The lesser spread in the eastern

United States may also have been a reflection of cli-

matologically cloudier and moister atmospheric and soil

FIG. 4. Background error covariance fitted length scales for

(a) horizontal distance, (b) vertical distance, and (c) coastal prox-

imity difference. July values are red and August are blue.
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states and their constraints on temperature variation

(Dai et al. 1999). Spreads were larger in the northern

and central Rockies and western Great Plains, perhaps

in part reflecting great temperature differences between

afternoons with and without thunderstorms. Spread vari-

ations were more zonal in character at 1200 UTC and

lower in the southernUnited States, reflecting the reduced

variability in the subtropics relative to the extratropics.

We turn now from the components of the error co-

variance model to the numerical procedure for applying

the statistical interpolation. This was generated per

Eq. (3), with background error covariances calculated

from Eqs. (7) and (8). The term (HBHT 1 R)21 was

first precalculated at a given time using all available

observations. HBHT represented the climatological

background error covariance matrix between all the

observation locations. HBHT 1 R was inverted through

an LU decomposition procedure (Press et al. 1992), and

(HBHT 1 R)21{tstn(d, h) 2 H[T(d, h)]} was computed

through LU backsubstitution (Press et al. 1992). The

analysis procedure then looped over each grid point in the

CONUS, calculating the cross covariance BHT between

that grid point and every observation location, again with

covariances calculated using Eqs. (7) and (8). The final

analysis for that grid point was generated from the dot

product of the associated row of BHT with (HBHT 1
R)21{tstn(d, h) –H[T(d, h)]}.

Two plots of the Kalman gain (Maybeck 1994, sec-

tion 3.11), BHT (HBHT 1 R)21 are shown in Fig. 6,

for 0000 UTC in July at Sacramento, California, and

Denver, Colorado. These present the grid of multipli-

cation factors to apply to the observation increment

{tstn(d, h) –H[T(d, h)]} at the station location. Were that

station the only one available, the analysis increment

would simply be the Kalman gain times that single

observation increment. At Sacramento, the observa-

tion increment is spread out more readily to other lo-

cations in the San Joaquin Valley than to points in the

Sierra Nevada at a similar distance. For Denver, an

observation has its greatest impact along the Front

Range in Colorado and Wyoming, with progressively

diminished impact to the west, in the high peaks of the

Rocky Mountains.

4. Results

Figure 7 provides an example of the construction

of the gridded benchmark from climatology and a per-

sistence of the previous hour’s analysis of anomalies

from climatology. The time at which the analysis of

FIG. 5. Gridded estimates of background error spreads (the standard deviation of observed temperatures with

respect to the climatology) across the CONUS, a component of the model of background error covariances.

(a) July, 0000 UTC; (b) August, 0000 UTC; (c) July, 1200 UTC; and (d) August, 1200 UTC.
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temperature deviations from climatology was generated

was 0000 UTC 1 July 2015. From this, a 1-h persistence

forecast of these anomalies is made for 0100 UTC 1 July

2015. The left-hand panel shows the PRISM-based cli-

matology in the western United States for 0100 UTC

1 July 2015, the date and time of the 1-h forecast. It

has significant spatial detail, including elevation-related

temperature variations and cooler temperatures for grid

points near the Pacific Ocean. The middle panel pro-

vides both the observed anomalies from the PRISM

climatology at 0000 UTC (the overplotted numbers)

and the resulting gridded analysis of the anomalies in

colors. The analysis exhibited temperature varia-

tions that appear to fit the observed anomaly data

well, and the gridded analysis had elevation- and

coastal-proximity related spatial detail. Finally, the

right-hand panel of Fig. 6 shows the final 1-h fore-

cast, produced from the addition of the 0100 UTC

climatology and the (persisted) 0000 UTC analyzed

deviations.

A comparison of CONUS-averaged error statistics of

theHRRRand the statistical benchmark are provided in

Fig. 8. This may be compared this with Fig. 8 from Part I;

now the benchmark is a cross-validated, gridded 1-h

forecast as opposed to Part I’s station-based benchmark.

Like the station benchmark, the statistical benchmark

appears to exhibit insignificant bias for all times of the

day when averaged over many station locations. Errors

were larger with the gridded benchmark than they were

for the station benchmark in Part I.

The gridded benchmark errors were statistically sig-

nificantly lower than those from 1-hHRRR forecasts for

all hours of the day in July 2015. The differences were

most striking during the daytime,;1500–2300 UTC. As

the sun rises, energy inputs become larger and if cloud

cover is misforecast, then energy input errors to the

surface radiation balance are also larger. In this situation

the downward solar radiation reaching the surface will

be misestimated, and the ground- and sensible heat flux

will also likely be misestimated.

The August 2018 HRRR forecasts tell a different

story; withmany improvements to the system, theHRRR

forecasts were very near and sometimes slightly lower in

error than the gridded benchmark. August 2018 HRRR

forecast bias was reduced substantially relative to the July

2015 values.

Are there specific geographic regions where the sur-

face temperatures from the HRRR and the gridded

benchmark were notably different from each other?

The 0000 UTC HRRR and gridded benchmark RMS

errors at stations across the CONUS are plotted in

Fig. 9, with corresponding biases in Fig. 10. Figure 9a

shows RMSE from the HRRR system of July 2015, and

Fig. 9b the RMSE for the HRRR in August 2018.

FIG. 6. Illustration of 0000 UTC July Kalman gain for (a) Sacramento, CA, and (b) Denver, CO. Stations are

located at the black dots. Colors represent terrain elevation. Kalman gain contours are plotted for the 0.1, 0.3, 0.5,

and 0.7 levels, with progressively thicker contours for each.
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Respective benchmark RMSEs are presented in Figs. 9c

and 9d. For July 2015, errors were more often than not

higher in the HRRR system, and these errors were

particularly large in the mountainous western United

States and northern Great Plains. The gridded bench-

mark, with a few exceptions, exhibited lower and more

geographically uniform errors and smaller biases.

However, by August 2018, HRRR errors were dramat-

ically reduced, especially in the Rocky Mountains,

where their errors were commonly lower than for the

gridded benchmark. Biases for the HRRR system were

again markedly reduced in August 2018 relative to the

July 2015 values.

Figure 11 provides a scatterplot of the comparative

RMSE and bias at 0000 UTC between the HRRR and

the gridded benchmark. Again, for July 2015, the ma-

jority of verification sites have smaller RMSE in the

gridded benchmark than the HRRR system. For August

2018, now the majority of sites have lower errors in

the HRRR system relative to the gridded benchmark.

August 2018 biases in the HRRR and the gridded

benchmark were comparable in magnitude and often

similar in sign. Returning to the original hypothesis, that

this more rigorous gridded benchmark will still provide

competitive errors relative to numerical weather pre-

dictions in regions with moderate to dense station ob-

servations, the hypothesis was confirmed for July 2015

data, but the benchmark was only somewhat competi-

tive in August 2018.

5. Discussion on broader applicability

a. Hourly high-resolution surface-temperature
analyses and reanalyses

This article has demonstrated that it is possible to

generate accurate real-time and retrospective 1-h sur-

face temperature forecasts in data-rich regions that have

PRISM climatologies without the computational ex-

pense of a numerical weather prediction system. The

gridded benchmark procedure generated forecasts that

were more skillful than the raw HRRR system in July

2015 and generally competitive with the HRRR in

FIG. 7. An illustration of the procedure for generating gridded statistical 1-h forecasts of surface temperature, valid at 0100 UTC 1 Jul

2015. (a) The PRISM-based climatology adapted to the date of the forecast. (b) The analysis of temperature anomalies from the 0000UTC

climatology (colors) and the observed station anomalies (plotted numbers). (c) The sum of (a) and (b), a statistical forecast blending the

climatology with the 1-h persisted anomaly.
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August 2018. The HRRR background forecasts did

not incorporate the RTMA procedure to adjust the

background for differences in elevation between fore-

cast and analysis grids.

This technology may facilitate the generation of

computationally inexpensive multidecadal surface tem-

perature reanalyses over the CONUS. Statistically

generated 1-h forecasts could potentially be used as the

replacement numerical model background states in the

statistical interpolation analysis of the current hour’s

surface temperature observations. Similar statistical

interpolation procedures to those used in the genera-

tion of the forecast benchmark could be used, but the

analysis would likely use the 1-h gridded benchmark

forecast for the background instead of climatology.

The generation of a single analysis takes O(1) min on

a current-generation desktop computer. Hence, to

produce 20 years of hourly background forecasts and

20 year of reanalyses would take roughly 2 3 20

years 3 365 days 3 24 h 5 350 400min, or 242 days

on a desktop. With a 10-computer cluster, produc-

tion would take less than one month. The procedure

FIG. 8. 1-h surface temperature forecast error statistics for CONUSHRRR forecasts interpolated to stations

and for the gridded benchmark at those stations. (a) Root-mean-square error, July 2015; (b) root-mean-square

error, August 2018; (c) mean absolute error, July 2015; (d) mean absolute error, August 2018; (e) bias, July

2015, and (f) bias, August 2018. Error bars are recentered around the station benchmark and represent the 5th

and 95th percentiles from a paired block bootstrap distribution consistent with the null hypothesis of no

differences in mean.
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could also be applied in other regions where PRISM

or PRISM-like climatologies are available and where

observation density is adequate. The major tasks in per-

forming such a reanalysis over the CONUS would likely

include gathering and quality control of a more exten-

sive set of surface-temperature observations and the re-

formulation of the background error covariance model

for the actual analysis procedure.

The current gridded benchmark produced its fore-

casts on the 0.046678 PRISM grid, rather than on the

2.5-km grid used in the RTMA system that provides

the ‘‘analysis of record’’ for the CONUS for the

U.S. National Weather Service. There would be ad-

ditional development needed to adapt the technology

to this RTMA grid with its associated terrain elevation

dataset.

b. Applications of the hourly surface-temperature
analyses and reanalyses

Were accurate, unbiased reanalyses and real-time

analyses available, several impactful applications could

be anticipated. For example, the U.S. NWS uses gridded

surface temperature analyses to statistically postprocess

multimodel ensemble numerical forecast guidance to

correct bias and generate improved deterministic and

probabilistic forecast products. This is referred to as

the National Blend of Models (NBM) project, and

these postprocessed products are used to provide human

FIG. 11. Scatterplot of errors and bias for HRRR vs gridded benchmark. (a) 1-h forecast RMSE, July

2015; (b) 1-h forecast RMSE, August 2018; (c) 1-h forecast bias, July 2015, and (d) 1-h forecast bias,

August 2018.
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forecasters with a gridded forecast estimate for use in

product generation. Examples for precipitation forecast

development can be found in Hamill et al. (2017) and

Hamill and Scheuerer (2018). Surface temperature

forecast products are one of the flagship elements in the

NBM, and their accuracy depends in turn on the accu-

racy of the analyses against which they are calibrated.

Improved surface temperature reanalyses over the

CONUS and over a long period of time could be lev-

eraged along with reforecasts (Hamill et al. 2013) to

increase training sample size and improve the post-

processed NBM temperature guidance. It could also be

used to improve longer-lead postprocessed guidance

such as week 12 to week 14 temperature forecast

products generated by the Climate Prediction Center.

The forecast temperature training data in the current

NBM use a decaying-average bias correction technique

(Cui et al. 2012) that requires archival of only the recent

most forecast and analysis. While this procedure is

attractive from the standpoint of minimizing storage

space, the algorithm has deficiencies which are dis-

cussed in Hamill (2018), and greater accuracy and

realistic detail can be expected when longer training

datasets are leveraged.

Other applications of surface temperature reanalyses

could be envisioned as well. Whether it is appropriate or

not, many climate change studies may use reanalysis

data to inform inferences about the changes in climate.

A statistical procedure such as this, demonstrably un-

contaminated by background forecast model bias, could

provide better quality data for such studies. Also, after

major high-impact events such as heat waves or cold

outbreaks, there is commonly a desire to understand the

causes and to make quantitative statements about the

relative effects of weather variability, boundary con-

ditions (soil or ocean state), or climate change (e.g.,

Dole et al. 2011). Unbiased reanalyses would be help-

ful for such attribution studies, and the methodology

used here should make high-resolution CONUS sur-

face temperature reanalyses feasible.

c. Bias correction of numerical weather prediction
hourly background forecasts

An underpinning assumption in most data assimila-

tion procedures is that the background state is unbiased.

As shown in Fig. 7, this assumption was commonly

violated in July 2015, though bias was substantially

improved with August 2018 forecasts. However, it may

be possible to apply a bias correction to the back-

ground forecast, and a time series of unbiased hourly

background forecasts and analyses could facilitate this.

See Dee (2005) for several possible bias-correction

procedures that could leverage such data.

d. Combining dynamical and statistical background
state estimates

Another straightforward method for improving NWP

1-h background estimates would be to linearly combine

the estimates from the NWP system together with those

from the gridded benchmark described above; this may

reduce the bias and error of the background forecast

used in the data assimilation. Several potential issues

would need to be addressed, such as how to handle a

potential discontinuity on the U.S.–Canadian and U.S.–

Mexican borders, given that PRISM climatologies are

currently unavailable for Canada or Mexico.

e. Forcings for land surface state estimation

The Global Land Data Assimilation System (GLDAS;

Rodell et al. 2004) and similar offline land-state estima-

tions systems require surface temperature estimates as a

model forcing. Forcing such systems with high-quality

surface-temperature reanalyses may improve soil tem-

perature state estimates in such systems. If they in turn

are used in the initialization of the soil state for numerical

weather predictions, this may lead to improved surface-

temperature forecasts, since surface temperatures are

strongly affected by the soil temperature.

6. Conclusions

This article continued Part I’s exploration of a bench-

marking procedure for hourly surface temperature fore-

casts created by rapidly cycling numerical weather

prediction systems. In this article, an innovative statis-

tical interpolation procedure was developed to combine

information from a seasonally and diurnally dependent

gridded climatology of surface temperature over the

CONUS together with a gridded 1-h persisted analysis

of anomalies from that climatology based on station

observations. The procedure for generating the per-

sisted analyses was the commonly used ‘‘optimal’’ or

statistical interpolation. The novel aspect of the statis-

tical interpolation procedure was the model for back-

ground error covariances of climatology. This used an

exponential distance norm with an effective distance

combining components for horizontal distance, abso-

lute vertical distance, and absolute distance in a coastal

proximity index. This novel error covariance model

produced gridded anomaly estimates with significant

spatial detail in mountainous regions and along the

U.S. West Coast.

Results presented here showed that the statistically

generated 1-h benchmark forecasts provided lower root-

mean square errors, mean absolute errors, and bias over

the CONUS for the July 2015 test period relative to the
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HRRR system. For August 2018, theHRRR systemwas

much improved, with greatly reduced bias and errors

that often were slightly lower than those produced by

the gridded benchmark. As expected, the errors of the

gridded product in this Part 2 of the series were sub-

stantially higher than for the station-based benchmark

in Part I. This was because the gridded benchmark was

generated from independent data (i.e., stations other

than the ones used for evaluation). In this way, any er-

rors of representativeness particular to stations were

eliminated.

There was a dramatic improvement in 1-h surface

temperatures in the HRRR system from version 1 (July

2015) to version 3 (August 2018), described largely in

Benjamin et al. (2016). The higher error and bias in the

HRRR 1-h forecasts of 2015 highlights the challenge of

making hourly numerical predictions of surface tem-

perature. These forecasts are readily contaminated by

the misestimation of soil surface temperatures, mis-

estimation of cloud amount and cloud optical proper-

ties, and many other effects. Many changes were made

to the HRRR system between versions, including the

assimilation of cloud and precipitation hydrometeor

information and the use of surface temperature and

humidity innovations to make increments to the soil

temperature andmoisture; see alsoMahfouf et al. (2009)

and Lin and Pu (2018). From the results presented here,

these changes had a dramatic and positive impact on the

quality of short-term surface temperature forecasts.

Section 5 discussed the implications of this research

beyond the benchmarking of 1-h forecasts. A minor

variant of the procedure discussed here could be used

to generate computationally inexpensive, unbiased re-

analyses and real-time analyses of surface temperature

over the CONUS (the real-time analyses would sup-

plement, not replace the RTMA). This in turn may

stimulate many applications, from facilitating im-

proved statistical postprocessing of surface tempera-

ture to the bias correction of background forecasts

in the NWP system. We hope this article stimulates

broader interest and future collaborations to develop

such applications.
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